### **NOAA Technical Memorandum NOS CS 57**

# Global ESTOFS, STOFS-3D-Atlantic and OFS Water Level Skill Assessment Comparisons

Silver Spring, Maryland August 2023



**Notional Oceanic and Atmospheric Administration** 

U.S. DEPARTMENT OF COMMERCE National Ocean Service Coast Survey Development Laboratory Office of Coast Survey National Ocean Service National Oceanic and Atmospheric Administration U.S. Department of Commerce

The Office of Coast Survey (OCS) is the Nation's only official chartmaker. As the oldest United States scientific organization, dating from 1807, this office has a long history. Today it promotes safe navigation by managing the National Oceanic and Atmospheric Administration's (NOAA) nautical chart and oceanographic data collection and information programs.

There are four components of OCS:

The Coast Survey Development Laboratory develops new and efficient techniques to accomplish Coast Survey missions and to produce new and improved products and services for the maritime community and other coastal users.

The Marine Chart Division acquires marine navigational data to construct and maintain nautical charts, Coast Pilots, and related marine products for the United States.

The Hydrographic Surveys Division directs programs for ship and shore-based hydrographic survey units and conducts general hydrographic survey operations.

The Navigational Services Division is the focal point for Coast Survey customer service activities, concentrating predominately on charting issues, fast-response hydrographic surveys, and Coast Pilot updates.

### **NOAA Technical Memorandum NOS CS 57**

### Global ESTOFS, STOFS-3D-Atlantic and OFS Water Level Skill Assessment Comparisons

Neil Weston, Zizang Yang, Edward Myers

Office of Coast Survey, Coast Survey Development Laboratory, Silver Spring, MD

August 2023



## **Notional Oceanic and Atmospheric Administration**

U. S. DEPARTMENT OF COMMERCE Gina Raimondo, Secretary National Oceanic and Atmospheric Administration Richard Spinrad, Under Secretary National Ocean Service Nicole LeBoeuf, Assistant Administrator

Office of Coast Survey Rear Admiral Benjamin Evans Director Coast Survey Development Laboratory Corey Allen Acting Division Chief

#### NOTICE

Mention of a commercial company or product does not constitute an endorsement by NOAA. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.

#### TABLE OF CONTENTS

| List of Figuresiv                                                              |
|--------------------------------------------------------------------------------|
| List of Tablesv                                                                |
| ABSTRACTvi                                                                     |
| 1. Introduction 1                                                              |
| 2. Operational Forecast Systems                                                |
| 3. Project Design                                                              |
| 4. Results7                                                                    |
| I. Bias and RMSE of the SFBOFS, NGOFS2, and CBOFS Water Levels                 |
| II. Bias and RMSE of the ESTOFS Water Levels16                                 |
| III. Comparison of Bias and RMSE Between ESTOFS and SFBOFS / NGOFS2 / CBOFS 18 |
| IV. Comparison of Bias and RMSE Between STOFS-3D-Atlantic and NGOFS2 / CBOFS / |
| E310F5                                                                         |
| 5. Concluding Remarks                                                          |
| Acknowledgements                                                               |
| References                                                                     |
| APPENDIX STATION METADATA FOR EACH OPERATIONAL FORECAST SYSTEM                 |

#### LIST OF FIGURES

| Figure I.1 Bias of the SFBOFS water level                                              | 8  |
|----------------------------------------------------------------------------------------|----|
| Figure I.3 Color coded map of combined bias and RMSE of the SFBOFS water level         | 10 |
| Figure I.4 Bias of the NGOFS2 water level                                              | 10 |
| Figure I.5 Color coded map of bias of the NGOFS2 water level                           | 11 |
| Figure I.6 Color coded map of combined bias and RMSE of the NGOFS2 water level         | 12 |
| Figure I.7 Bias of the CBOFS water level                                               | 13 |
| Figure I.8 Color coded map of bias of the CBOFS water level                            | 14 |
| Figure I.9 Color coded map of combined bias and RMSE of the CBOFS water level          | 15 |
| Figure II.1 Bias of the ESTOFS water level                                             | 16 |
| Figure II.2 Color coded map of bias of the ESTOFS water level                          | 16 |
| Figure II.3 Color coded map of combined bias and RMSE of the ESTOFS water level        | 17 |
| Figure III.1 Comparison of bias between the ESTOFS water level and                     |    |
| SFBOFS/NGOFS2/CBOFS                                                                    | 19 |
| Figure III.2 Comparison of RMSE between the ESTOFS water level and                     |    |
| SFBOFS/NGOFS2/CBOFS                                                                    | 20 |
| Figure IV.1 Bias of the STOFS-3D-Atlant water level                                    | 21 |
| Figure IV.2 Color coded map of bias of the STOFS-3D-Atlantic water level               | 22 |
| Figure IV.3 Color coded map of combined bias and RMSE of the STOFS-3D-Atlantic water   |    |
| level                                                                                  | 23 |
| Figure IV.4 Comparison of bias and RMSE of the STOFS-3D-Atlantic w water level and the |    |
| NGOFS2 / CBOFS / ESTOFS water levels                                                   | 24 |
| Figure IV.5 Comparison of RMSE between the STOFS-3D-Atlantic water level and the       |    |
| NGOFS2/CBOFS/ESTOFS water levels                                                       | 26 |
|                                                                                        |    |

#### LIST OF TABLES

| Table 1. List of National Ocean Service Operational Forecast Systems for skill assessment. |   |
|--------------------------------------------------------------------------------------------|---|
| Listed in column two are the model cores such as the Finite Volume Community Ocean         |   |
| Model (FVCOM), Regional Ocean Modeling System (ROMS), ADvanced CIRCulation                 |   |
| (ADCIRC) model, and Semi-implicit Cross-scale Hydroscience Integrated System Model         |   |
| (SCHISM)                                                                                   | 4 |
| Table 2. Online resources for the forcing data listed in Table 1                           | 4 |

#### ABSTRACT

Over the years, the NOAA National Ocean Service (NOS) has developed about 20 operational nowcast and forecast systems (OFS) for U.S. coastal waters as well as some deep ocean areas. The OFS support marine navigation, emergency response, search and rescue, offshore oil/gas operations, and the environmental management communities. The OFS perform nowcasts and short to long term (0 hr. - 180 hrs.) forecast guidance of pertinent parameters such as water levels, three-dimensional (3-D) water currents, salinity, water temperature. The OFS consist of the automated integration of observing system data streams, hydrodynamic model predictions, product dissemination and continuous quality-control monitoring. State-of-the-art numerical hydrodynamic models driven by real-time data and meteorological, oceanographic, and/or river flow rate forecasts form the core of these end-to-end systems.

The present study represents the first step toward gaining thorough and comprehensive insight into the relative performance between/among various NOS OFS. We focused on investigating five OFS among a total of about twenty operational OFS. The five OFS are, respectively, the San Francisco Bay OFS (SFBOFS), the Chesapeake Bay OFS (CBOFS), the Northern Gulf of Mexico OFS (NGOFS2), the Global Extratropical Surge & Tide OFS (hereafter referred to as ESTOFS), and the 3-D Surge and Tide OFS for the Atlantic Basin (STOFS-3D-Atlantic). These OFSs represent both the NOS port-based OFS (SFBOFS and CBOFS) and bay, region, or global based, larger domain OFS (NGOFS2, ESTOFS and STOFS-3D-Atlantic). Hopefully, the findings may provide technical guidance to various levels of OFS management and/or stakeholders in the planning for the development of the next generation, high-performance OFS.

We calculated the bias and RMSE of the nowcast water levels by comparing the model time series with the observed data at various NOSNational Water Level Observation Network (NWLON) stations during a time span of one to three months periods. Some of the areas are covered by more than one OFS. The ESTOFS and STOFS-3D-Atlantic domains cover broader areas that overlapped both with each other and even encompass the domains of some other OFS. In cases of overlapped domains, the water level bias and RMSE between the concerned OFS are compared and contrasted so as to gain insight into the relative skills. The results may help identify the merits and disadvantages of each OFS.

The study concluded that these five OFS demonstrated similar levels of model skill in terms of bias and RMSE. The model skill represents an integrated balance of multiple factors, such as the system configuration, the model numerical schemes, model grid resolution, the accuracy of the forcing data, etc. The present study reveals that the five OFS demonstrated similar degrees of model performance in terms of the bias and RMSE of the nowcast water level. In certain areas, some OFS may exhibit slightly better skill, i.e., smaller bias or RMSE. However, none of the five OFS demonstrated statistically significantly better overall skill than the others.

This report is organized as follows. Following up to a brief introduction in Section 1, Section 2 describes the configurations of the concerned NOAA/NOS OFS with respect to the employed core hydrodynamic models, forcing data flow, etc. Section 3 is about the project design that details the methods for data processing and statistics analysis. Section 4 shows the model-data comparison results in terms of the model water level bias and RMSE. Section 5 summarizes the study and recommends future work.

#### **1. INTRODUCTION**

This research aims to gain insights about relative skills of five National Ocean Service (NOS) operational forecast systems (OFS) by comparing the bias and RMSE of their nowcast water levels. The five OFS refer to the San Francisco Bay OFS (SFBOFS), the Chesapeake Bay OFS (CBOFS), the Northern Gulf of Mexico OFS (NGOFS2), the Global Extratropical Surge & Tide OFS (hereafter referred to as ESTOFS), and the 3-D Surge and Tide OFS for the Atlantic Basin (STOFS-3D-Atlantic), respectively. The results may help identify the merits and disadvantages of each OFS, as well as to provide authoritative data, information and guidance on storm surge, currents, water levels, salinity, and water temperature for the Gulf of Mexico, and the Atlantic and Pacific regions.

We aim to identify ideal models and parameters for a given region by performing skill assessments on several Operational Forecast Systems and the Global Extratropical Surge and Tide Operational Forecast System (Global ESTOFS). Hopefully, the findings may provide technical guidance to various levels of OFS management and/or stakeholders in the planning for the development of the next generation, high-performance OFS.

#### 2. OPERATIONAL FORECAST SYSTEMS

NOAA continues to develop and operate national and regional networks of Operational Nowcast and Forecast Hydrodynamic Modeling Systems (called OFS) to support NOAA's mission goals and priorities. An OFS consists of the automated integration of observing system data streams, hydrodynamic model predictions, product dissemination and continuous quality-control monitoring. State-of-the-art numerical hydrodynamic models driven by real-time data and meteorological, oceanographic, and/or river flow rate forecasts form the core of these end-to-end systems. NOAA's OFS perform nowcasts and short to long term (0 hr. - 180 hrs.) forecast guidance of pertinent parameters such as water levels, water currents, salinity, water temperature, and waves, and disseminate them to users.

Nowcasts and forecasts provide scientific information about the present and future states of water levels (and possibly currents and other relevant oceanographic variables, such as salinity and water temperature) in a coastal area. These predictions rely on either observed data or forecasts from a numerical model. OFS are being implemented in critical ports, harbors, estuaries, Great Lakes and coastal waters of the United States, and join the National Ocean Service's Precision Marine Navigation Program and other operational oceanographic capabilities to form a national backbone of real-time data, tidal predictions, data management and operational forecast modeling.

An important product of two- and three-dimensional model based forecast guidance systems, such as the Global Extratropical Surge and Tide Operational Forecast System (Global ESTOFS) and regional Operational Forecast Systems (OFS), are to provide accurate and timely information for coastal communities and to support safe and precise marine navigation by providing mariners with reliable data on water levels, surface water currents, and vertical stratification.

Coastal and ocean models like those mentioned above and in Table 1 below are also used for forecasting to support decision-making at all levels. To determine and quantify the performance and capabilities of these models, several metrics and a rigorous set of tests are conducted as part of a skill assessment performed on each model.

| Model                | Model Core | Model<br>Hydrodynamics | Flood<br>Inundation | NCEP <sup>*</sup> Model<br>for Surface<br>Forcing | River Forcing /<br>River Discharge |
|----------------------|------------|------------------------|---------------------|---------------------------------------------------|------------------------------------|
| SFBOFS               | FVCOM      | 3-D, baroclinic        | no                  | NAM                                               | USGS: observed data                |
| CBOFS                | ROMS       | 3-D, baroclinic        | no                  | NAM                                               | As above                           |
| NGOFS2               | FVCOM      | 3-D, baroclinic        | no                  | NAM                                               | As above                           |
| ESTOFS               | ADCIRC     | 2-D, barotropic        | yes                 | GFS                                               | No river forcing                   |
| STOFS-3D<br>Atlantic | SCHISM     | 3-D, baroclinic        | yes                 | GFS & HRRR                                        | NWM forecast                       |

Table 1. List of National Ocean Service Operational Forecast Systems for skill assessment. Listed in column two are the model cores such as the Finite Volume Community Ocean Model (FVCOM), Regional Ocean Modeling System (ROMS), ADvanced CIRCulation (ADCIRC) model, and Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM).

\*Note: National Centers for Environmental Prediction (NCEP)

Table 2 contains metrics and additional information on the forcing models used in many of the OFS listed in Table 1. Additionally, the outcomes from the skill assessments will estimate each model's performance and will also identify possible areas for improvement.

| Names | Online Sites                                                                       |
|-------|------------------------------------------------------------------------------------|
| NAM   | North American Mesoscale Forecast System, 12 km resolution                         |
|       | https://www.ncei.noaa.gov/products/weather-climate-models/north-american-mesoscale |
| GFS   | Global Forecast System, 0.25 degree resolution                                     |
|       | https://www.nco.ncep.noaa.gov/pmb/products/gfs/                                    |
| HRRR  | High-Resolution Rapid Refresh, 3-km resolution                                     |
|       | https://rapidrefresh.noaa.gov/hrrr/                                                |
| USGS  | United States Geological Survey                                                    |
|       | https://waterdata.usgs.gov/nwis/rt                                                 |
| NWM   | National Water Model                                                               |
|       | https://water.noaa.gov/about/nwm                                                   |

Table 2. Online resources for the forcing data listed in Table 1

#### 3. PROJECT DESIGN

For this project we first chose Global Extratropical Surge and Tide Operational Forecast System (Global ESTOFS), the Chesapeake Bay OFS (CBOFS), the San Francisco Bay OFS (SFBOFS) and the Northern Gulf OFS (NGOFS2) as the main models to evaluate and compare. One of the routine tasks in performing a comparison project of this nature is to identify the stations within each OFS and then to retrieve the data and water level information for the duration of the project.

Global ESTOFS provides a second operational set of forecast guidance in addition to the ET-SURGE (ETSS) model. It has a community-based ADvanced CIRCulation (ADCIRC) model which is used for Global ESTOFS and the Global Forecast System (GFS) model provides the atmospheric forcing. The Global ESTOFS model is run on NOAA's WCOSS supercomputing system four times daily with 6-hour nowcasts and forecast guidance out to 180 hours producing numerical storm surge guidance for extratropical systems. Our comparisons will use 48 stations which contribute to Global ESTOFS.

CBOFS is one of several models that is operated by NOAA's National Ocean Service. The new higher resolution CBOFS is now based on a three-dimensional ROMS model that runs on NOAA's High Performance Computers (HPC). In addition to providing water level nowcast and forecast guidance, the new CBOFS also provides currents, water temperature and salinity as well as interpolated winds from National Weather Service products. CBOFS runs four times per day and generates 6-hour nowcasts and 48-hour forecast guidance. CBOFS products include time series graphics at station locations and areal animations of the whole Chesapeake Bay for all five parameters (wind, water level, water currents, water temperature and salinity). Our comparison will evaluate 13 stations from the Chesapeake Bay network.

SFBOFS is based on a three-dimensional FVCOM model that also runs on NOAA's High Performance Computing System (HPCS). SFBOFS provides water levels, water currents, water temperature and salinity nowcast and forecast guidance as well as interpolated winds from National Weather Service products for two subdomains: the San Francisco Bay and the San Francisco Bay Entrance. SFBOFS runs four times per day and generates 6-hour nowcasts and 48-hour forecast guidance. SFBOFS products include time series graphics at station locations and areal animations of the San Francisco Bay for all five parameters (winds, water levels, water currents, water temperature and salinity). We will evaluate seven stations from this network as part of our comparison.

NOAA's National Ocean Service (NOS) has also upgraded the existing Northern Gulf of Mexico Operational Forecast System (NGOFS, NEGOFS, and NWGOFS) to the new Northern Gulf of Mexico Operational Forecast System (NGOFS2) which extends the model domain to cover Lower Mississippi River, Barataria Bay, Lake Pontchartrain, Corpus Christi Bay, and Mexican coastal waters without sacrificing model resolution. NGOFS2 is the same hydrodynamic model using three-dimensional FVCOM. NGOFS2 runs four times per day and provides water levels, water currents, water temperature and salinity 6-hour nowcast and forecast guidance out to 48 hours for the northern Gulf of Mexico including nine ports at Matagorda Bay, Galveston Bay, Sabine Neches, Calcasieu/Lake Charles, Gulfport, Pascagoula Bay, Mobile Bay, Corpus Christi Bay, and Lake Pontchartrain. Our comparison will evaluate 49 stations from the northern Gulf region.

To perform the evaluation and analyze the results in a consistent and unbiased manner, a number of steps needed to be taken. The first was to obtain and convert the nowcast netCDF data into appropriate or more manageable forms to work with. Next we had to retrieve the observed water level time series measurements from all of the National Water Level Observation Network (NWLON) stations and plot each time series. We needed to select the criteria for the weekly, monthly, and every two months skill assessments we were to perform. Lastly we needed to identify the skill parameters to report such as root mean square error (RMSE), bias and standard deviation (STD). To estimate RMSE and STD of the model water level, we used the model outputs on the closest model mesh nodes to the observation stations and compared the time series between the model and observations.

#### 4. RESULTS

This section presents the skill assessment results in terms of the model water level bias and the root-mean-square error (RMSE). The time periods for analysis vary for different OFS due to availability of either the model results or the observed data. The periods are March 25 - July 31, 2021 for SFBOFS; March 25 – August 30, 2021 for CBOFS; April 27 – August 31, 2021 for NGOFS2; March 25 – July 31, 2021 for ESTOFS; and July 25-August 23, 2021 for STOFS-3D-Atlantic. The STOFS-3D-Atlantic model data were kindly provided by the SCHISM team of the Virginia Institute of Marine Science, whereas the other model data were retrieved from the NOAA online resources.

To compare the model outputs with the observations, it is necessary to ensure that both data sets are referenced to the same vertical datum, e.g., the mean sea level (MSL) or the North American Vertical Datum of 1988 (NAVD 88). Depending on the characteristics of the OFS configurations, the water level time series of SFBOFS, CBOFS, NGOFS2, and ESTOFS are referenced to MSL, whereas those of STOFS-3D-Atlantic are referenced to NAVD88. In this study, the observed water level time series relative to MSL were retrieved from the NOS NWLON station database. Hence, in assessing the model skill of STOFS-3D-Atlantic, the observed data were first adjusted to be referenced to NAVD88 prior to performing the model-data comparison.

#### I. Bias and RMSE of the SFBOFS, NGOFS2, and CBOFS Water Levels

For this project, we analyzed water level data collected from 135 stations along the Atlantic, Pacific and Gulf Coasts. The plots in this first section show water level bias and Root Mean Square Error (RMSE) for the San Francisco Bay Operational Forecast System (SFBOFS), Northern Gulf Operational Forecast System (NGOFS2), and the Chesapeake Bay Operational Forecast System (CBOFS). In Fig. I.1 the water level bias for seven stations in the SFBOFS is plotted. The average bias is 0.12 m and ranges from 0.01 m to 0.27 m. The magnitude and standard deviation of the absolute value of the average bias are 0.12 m and 0.09 m, respectively.



Figure I.1 Bias of the SFBOFS water level

In Fig I.2 the bias is smaller at the stations close to the open coast and becomes gradually greater at the embayment stations. The bias is nearly zero at the open coastal station in the northwest and the station at the bay entrance. It increases to about 0.11 m at the three embayment stations. Bias at the two stations in the northeast is over 0.22 m. The two stations are located in the upstream portion of the river course. It is noted that the two stations are not shown on the CO-OPS SFBOFS website https://tidesandcurrents.noaa.gov/ofs/sfbofs/sfbofs\_entrance.html. This indicates that the nowcast/forecast guidance for water levels at the two stations and hence their adjacent areas are not supported by the SFBOFS. The large magnitudes of bias may be attributed to the particular vertical datum that is different from the mean sea level in this region. Additionally, Table A.1 contains the geographic location for all the stations.



Figure I.2 Color coded map of bias of the SFBOFS water level

Figure I.3 shows the RMSE for the San Francisco Bay area which ranges from 0.14 m to 0.30 m with an average of 0.20 m. The spatial distribution pattern for the RMSE is similar to that of the bias. This indicates that the bias makes up a significant portion of the RMSE at the stations, except at the open coastal station in the northwest and the station at the bay entrance. The RMSE is about 0.14 - 0.15 m at the open coast station in the northwest and the bay entrance station. For the three embayment stations, the RMSE ranges from 0.17 m to 0.23 m and for the two stations in the upper portion of the river, the RMSE is 0.25 m and 0.30 m, respectively.



Figure I.3 Color coded map of combined bias and RMSE of the SFBOFS water level



Figure I.4 Bias of the NGOFS2 water level

Figure I.4 shows the NGOFS2 biases for 34 stations that range between -0.05 m and 0.16 m with an average bias of 0.03 m. The magnitude of the average bias is 0.03 m and the standard deviation of the bias is 0.05 m.



Figure I.5 Color coded map of bias of the NGOFS2 water level

Figure I.5 shows an even distribution of the magnitude of the bias across the NGOFS2 model domain. The biases of three stations (8774230, 8770475, 8761724) in the western domain appear to be most significant. Their corresponding bias values are 0.16 m, 0.11 m and 0.11 m respectively. The remaining 31 stations in the NGOFS2 domain have an average bias of 0.08 m. Additionally, Table A.2 contains the geographic location for all the stations.



Figure I.6 Color coded map of combined bias and RMSE of the NGOFS2 water level

The color-coded map in Fig. I.6 illustrates the bias and RMSE of the NGOFS2 water level. The range of the RMSE is from 0.07 m to 0.18 m with an average of 0.10 m. The RMSE demonstrates a similar spatial distribution to that of the bias in Fig. I.5. The RMSE is less than 0.10 m at the stations in Mobile Bay and adjacent waters but it does become greater at the stations to the west where it ranges from 0.09 m to 0.17 m. The RMSE appears to be most significant at stations 8774230 and 8761724 with corresponding RMSEs of 0.16 m and 0.14 m, respectively.



Figure I.7 Bias of the CBOFS water level

Figure I.7 shows the water level bias for seven stations in the CBOFS where the bias ranges from -0.03 m to 0.08 m with an average bias of 0.03 m. The magnitude and standard deviation of the bias are 0.04 m and 0.03 m, respectively.



Figure I.8 Color coded map of bias of the CBOFS water level

The color-coded map in Fig. I.8 illustrates the bias of the CBOFS water level. In general the bias appears to be smaller in the lower bay stations that are closer to the open coast than for those at the upper bay stations. The magnitude of the bias at the four lower bay stations is less than 0.02 m, whereas the bias at the upper three bay stations are 0.03 m, 0.05 m and 0.08 m respectively. The far north station (8574680) shows the greatest bias of 0.08 m. Additionally, Table A.3 contains the geographic location for all the stations.



Figure I.9 Color coded map of combined bias and RMSE of the CBOFS water level

In Fig. I.9 the RMSE of the CBOFS water level ranges from 0.06 m to 0.12 m with an average of 0.08 m. The standard deviation of the RMSE is 0.02 m. In general, RMSE is smaller in the lower bay region than in the upper bay region. The corresponding bias also appears to be smaller in the lower bay region. The two stations with the largest RMSE are stations 8574680 and 8571892 and have corresponding RMSEs of 0.11 m and 0.12 m, respectively.

#### II. Bias and RMSE of the ESTOFS Water Levels



Figure II.1 Bias of the ESTOFS water level

Figure II.1 illustrates the bias for 119 stations for the ESTOFS water level model. The biases range from -0.08 m to 0.43 m with an average bias of 0.06 m. The magnitude and standard deviation of the bias are 0.08 m and 0.11 m, respectively.



Figure II.2 Color coded map of bias of the ESTOFS water level

Figure II.2 shows the bias for 119 stations along the U.S. east and west coasts. The east coast has 86 stations where the bias ranges from -0.08 m to 0.38 m with an average bias of 0.04 m and an absolute value of bias average of 0.07 m. The west coast has 33 stations where the bias ranges from -0.01 m to 0.43 m with an average bias of 0.11 m and an absolute value of bias average of 0.11 m. The standard deviation of the biases along the east and west coasts are 0.10 m and 0.09 m, respectively. On average, the west coast stations demonstrate slightly greater magnitude of bias than the east coast stations, 0.11 m vs. 0.07 m. The magnitude of bias appears to be greater than 0.30 m at stations 8540433, 8545240, 8548989, and 8539094 with bias equal to 0.32 m, 0.36 m, 0.37 m, and 0.38 m, respectively. The four stations are aligned from south to north in the upper stream of the Delaware River (Figure II.2). Later versions of ESTOFS (later called STOFS) have resolved some wetting and drying issues that were found to occur which may have resulted in higher biases, including in these upper reaches of the Delaware River. Additionally, Table A.4 contains the geographic location for all the stations.



Figure II.3 Color coded map of combined bias and RMSE of the ESTOFS water level

Figure II.3 shows the RMSE for 119 stations along the U.S. east and west coasts. There are 86 stations along the east coast where the RMSE ranges from 0.08 m to 0.61 m with an average RMSE of 0.18 m and a standard deviation of RMSE of 0.11 m. The west coast has 33 stations where the RMSE ranges from 0.12 m to 0.47 m and has an average RMSE of 0.21 m and a standard deviation of RMSE of 0.10 m. On average, the west coast stations demonstrate slightly greater RMSE than the east coast stations, 0.21 m vs. 0.18 m. The RMSE appears to be greater than 0.50 m at stations 8545240, 8539094, and 8548989 with RMSE equal to 0.51 m, 0.59 m, and 0.61 m, respectively. These three stations are aligned from south to north in the upper stream of the Delaware River (Figure II.3). Again, later versions of ESTOFS (later called STOFS) have resolved some of the sources of high bias and RMSE, including in the Delaware River.

## III. Comparison of Bias and RMSE Between ESTOFS and SFBOFS / NGOFS2 / CBOFS

Figure III.1 shows the bias of the common stations (total of 29 stations) between ESTOFS and SFBOFS, or NGOFS2, or CBOFS. They include seven stations between ESTOFS and SFBOFS, 15 stations between ESTOFS and NGOFS2, and seven stations between ESTOFS and CBOFS. Overall, the bias points are scattered symmetrically around the black diagonal line (which represents the equal bias location). This indicates the model skill in terms of bias is similar between ESTOFS and SFBOFS / NGOFS2 / CBOFS.

For ESTOFS vs. SFBOFS (Red squares), both models demonstrate similar values of bias at the five open coast and embayment stations (Figure I.2). At the two upper river stations, SFBOFS exhibits greater bias than ESTOFS.

For ESTOFS vs. CBOFS, all the black triangles ride above the diagonal line. This means that the magnitude of the bias of CBOFS is greater than that of ESTOFS and hence, indicates a less satisfactory performance for CBOFS than ESTOFS.

For ESTOFS vs. NGOFS2, most of the blue circles are scattered below the diagonal line. This indicates that the magnitude of the bias of NGOFS2 is in general smaller than that of ESTOFS and hence, demonstrates a more satisfactory skill for NGOFS2 than ESTOFS.



Figure III.1 Comparison of bias between the ESTOFS water level and SFBOFS/NGOFS2/CBOFS.



Figure III.2 Comparison of RMSE between the ESTOFS water level and SFBOFS/NGOFS2/CBOFS

Figure III.2 shows the RMSE of the common stations (total of 29 stations) between ESTOFS and SFBOFS, or NGOFS2, or CBOFS. They include seven stations between ESTOFS and SFBOFS, 15 stations between ESTOFS and NGOFS2, and seven stations between ESTOFS and CBOFS. Overall, the RMSE points are scattered below the diagonal line (which represents the equal RMSE location). This means that in general, the RMSE of ESTOFS is larger than that of SFBOFS/NGOFS2/CBOFS. This

demonstrates that ESTOFS performs slightly worse in terms of RMSE than the other OFS.

For ESTOFS vs. SFBOFS, and similar to the case of bias, both models demonstrate similar RMSE at the five open coast and embayment stations, with ESTOFS slightly better than SFBOFS for RMSE (Figure I.2). However, at the two upper river stations, ESTOFS exhibits greater RMSE than SFBOFS, i.e., 0.25 m vs. 0.38 m and 0.30 m vs. 0.44 m.

For ESTOFS vs. NGOFS2, nearly all the blue circles scatter below the diagonal line. This indicates that the RMSE of NGOFS2 is smaller than that of ESTOFS and hence, demonstrates a more satisfactory performance for NGOFS2 than ESTOFS.

For ESTOFS vs. CBOFS, nearly all the black triangles scatter below the diagonal line. This means that RMSE of CBOFS is slightly less than that of ESTOFS and hence, indicates a slightly more satisfactory performance for CBOFS than ESTOFS.

## IV. Comparison of Bias and RMSE Between STOFS-3D-Atlantic and NGOFS2 / CBOFS / ESTOFS



Figure IV.1 Bias of the STOFS-3D-Atlant water level

There are a total of 135 stations (Table A.5) in Fig. IV.1 with biases ranging from -0.03 m to 0.74 m with an average bias of -0.04 m and a standard deviation of bias of 0.14 m. The magnitude of the bias is 0.11 m.



Figure IV.2 Color coded map of bias of the STOFS-3D-Atlantic water level

In general, the biases at the stations along the Florida coast appear to be smaller in magnitude than those at the stations along the Gulf of Mexico or along the Mid-Atlantic Bight (MAB) coast. The stations along the Gulf coast exhibit a smaller magnitude of the bias than the MAB stations. The majority of stations along the MAB coast exhibit negative bias with the maximum magnitude up to 0.30 m. The magnitude of the bias is the greatest at stations 8537121, 8773701, 8760721, and 8764044. The corresponding biases are -0.30 m, 0.28 m, 0.58 m, and 0.74 m, respectively.



Figure IV.3 Color coded map of combined bias and RMSE of the STOFS-3D-Atlantic water level

In Fig. IV.3, the RMSE ranges from 0.04 m to 0.76 m with an average RMSE of 0.16 m and a standard deviation of the RMSE of 0.09 m. The RMSE demonstrates a similar spatial pattern to that of bias (Figure IV.2). In general, the stations in the Gulf of Maine display the largest RMSEs over the entire STOFS-3D-Atlantic model domain. The stations along the MAB exhibit larger RMSE than those along the Florida and the Gulf of Mexico coasts. Two stations (8760721 and 8764044) in the Gulf of Mexico exhibit significantly greater RMSE than the remaining 133 stations. The corresponding RMSEs are 0.59 m and 0.76 m, respectively.



Figure IV.4 Comparison of bias and RMSE of the STOFS-3D-Atlantic w water level and the NGOFS2 / CBOFS / ESTOFS water levels

Shown on the plot are biases of the common stations (total of 126 stations) between STOFS-3D-Atlantic and NGOFS2, or CBOFS, or ESTOFS. They include 34 stations between STOFS-3D-Atlantic and NGOFS2, seven stations between STOFS-3D-Atlantic and CBOFS, and 85 stations between STOFS-3D-Atlantic and ESTOFS. Except for the five stations (outlined by the red rectangle on the plot), data points are scattered symmetrically around the black diagonal line. This indicates that in general, STOFS-

3D-Atlantic demonstrates a similar model skill of bias to the combined NGOFS2 / CBOFS / ESTOFS.

The five outlier stations (red rectangles) are stations 8539094, 8540433, 8545240, 8548989, and 8658120. The corresponding biases for these stations are 0.01 m, -0.14 m, -0.17 m, 0.06 m, and -0.09 m for STOFS-3D-Atlantic and are 0.38 m, 0.32 m, 0.36 m, 0.38 m, and 0.29 m for ESTOFS.

For STOFS-3D-Atlantic vs. NGOFS2 (blue circles), the NGOFS2 stations demonstrate a narrower range of bias that ranges from -0.05 m to 0.16 m compared with that of STOFS-3D-Atlantic that ranges from -0.19 m to 0.28 m.

For STOFS-3D-Atlantic vs. CBOFS (red squares), nearly all points are located above the diagonal line which reflects that the biases of CBOFS are greater than those of STOFS-3D-Atlantic. The bias of CBOFS ranges from -0.03 m to 0.08 m, whereas the bias of STOFS-3D-Atlantic ranges from -0.23 m to 0.03 m.

For STOFS-3D-Atlantic vs. ESTOFS (black triangles), most data points are located above the diagonal line which reflects that the biases of ESTOFS are greater than those of STOFS-3D-Atlantic. The bias of ESTOFS ranges from -0.08 m to 0.38 m, whereas the bias of STOFS-3D-Atlantic ranges from -0.30 m to 0.28 m.

Similar to Figure IV.4, shown on the plot are the RMSE of the common stations (total of 126 stations) between STOFS-3D-Atlantic and NGOFS2, or CBOFS, or ESTOFS. They include 34 stations between STOFS-3D-Atlantic and NGOFS2, seven stations between STOFS-3D-Atlantic and CBOFS, and 85 stations between STOFS-3D-Atlantic and ESTOFS. With the exception of the three stations (outlined by the red rectangle), the data points are scattered symmetrically around the black diagonal line. This indicates that in general, STOFS-3D-Atlantic demonstrates similar model skill of RMSE to the combined NGOFS2 / CBOFS / ESTOFS. The three outlier stations (outlined by the red rectangle) are stations 8539094, 8545240, and 8548989. The corresponding RMSEs for these stations are 0.10 m, 0.19 m, 0.21 m for STOFS-3D-Atlantic and are 0.50 m, 0.59 m, and 0.61 m for ESTOFS.

For STOFS-3D-Atlantic vs. NGOFS2 (blue circles), the NGOFS2 stations demonstrate a narrower range of RMSE that is between 0.07 m and 0.18 m compared with that of STOFS-3D-Atlantic that is between 0.06 m and 0.28 m.

For STOFS-3D-Atlantic vs. CBOFS (red squares), the CBOFS stations demonstrate a narrower range of RMSE that is between 0.06 m and 0.12 m compared with that of STOFS-3D-Atlantic that is between 0.06 m and 0.24 m.



Figure IV.5 Comparison of RMSE between the STOFS-3D-Atlantic water level and the NGOFS2/CBOFS/ESTOFS water levels

For STOFS-3D-Atlantic vs. ESTOFS (black triangles), and except for the three stations described in the above, the vast majority of the data points are rather evenly distributed around the diagonal line. This indicates both STOFS-3D-Atlantic and ESTOFS demonstrate similar degree of skill. Excluding the three outlier stations, the RMSE of

ESTOFS ranges from 0.08 m to 0.42 m, whereas the RMSE of STOFS-3D-Atlantic ranges from 0.06 m to 0.37 m.

#### **5. CONCLUDING REMARKS**

The present study aims to compare the model water level skills of five NOS OFSs and, if possible, to identify the OFS which may demonstrate significantly better skills than the others. We selected five characteristic NOS OFSs (SFBOFS, CBOFS, NGOFS2, ESTOFS, and STOFS-3D-Atlantic) that represent either eastern, or western U.S. coastal waters, or both to investigate the skills of the model simulated water levels. These OFSs represent both the NOS port based OFS (SFBOFS and CBOFS) and bay or region based, larger domain OFS (NGOFS2, ESTOFS and STOFS-3D-Atlantic).

For this research, we calculated the bias and RMSE of the nowcast water levels by comparing the model time series with the observed data at various NOS NWLON stations. We also compared the model performance between/among the five OFSs by contrasting the water level bias and RMSE to gain insights into the relative model skills compared with each other. The study concluded that these five OFSs mentioned above demonstrated similar levels of model skills in terms of bias and RMSE. The model skill represents an integrated balance of multiple factors, such as the system configuration, the model numerical schemes, model grid resolution, the accuracy (skills) of the forcing data, etc. Of the five OFS, they each simultaneously have their merits and disadvantages compared with each other. The present study reveals that the five OFS demonstrated similar degrees of model performance in terms of the bias and RMSE of the nowcast water level. In certain areas, some OFS may exhibit slightly better skills, i.e., smaller bias or RMSE. However, none of the five OFS demonstrated statistically significantly better skills than the others.

The present study represents the first step toward gaining a thorough and comprehensive insight into the relative performance between/among various NOS OFS. We focused on investigating these five OFSs mentioned above among a total of over ten operational OFS during a time span of one to three months period. The to-do list for the next steps may include the following two tasks:

- Include other NOS OFSs in the skill assessment and an inter-OFS model skill comparison. This may help gain a thorough understanding of the overall model skills of the NOS OFS currently in operations.
- Extend the period of skill assessment to one year or even multiple years. This may help reveal the monthly, seasonal, and even the interannual variability of the model performance.

Except for the five OFSs discussed in the present study, there are many other NOS OFSs that are worth investigation. They are

- Delaware Bay Operational Forecast System (DBOFS).
- Gulf of Maine Operational Forecast System (GoMOFS).
- New York and New Jersey Operational Forecast System (NYOFS).
- St. John's River Operational Forecast System (SJROFS).
- Tampa Bay Operational Forecast System (TBOFS).
- Columbia River Estuary Operational Forecast System (CREOFS).
- Cook Inlet Operational Forecast System (CIOFS).
- West Coast Operational Forecast System (WCOFS).

#### ACKNOWLEDGEMENTS

The following Virginia Institute of Marine Science colleagues kindly provided support for this project:

Y. Joseph Zhang, Fei Ye, Hao-Cheng Yu, Linlin Cui, and Wei Huang

The following NOAA colleagues also provided valuable contributions and insight during the development of this manuscript:

Gregory Seroka, John Kelley, and Saeed Moghimi

#### REFERENCES

- Zhang, etc., Implementation of Model Skill Assessment Software for Water Level and Current in Tidal Regions, NOAA Technical Report NOS CS 24, March 2006. <u>https://repository.library.noaa.gov/view/noaa/2204</u>
- Funakoshi, etc., The Extratropical Surge and Tide Operational Forecast System (ESTOFS) Atlantic Implementation and Skill Assessment. NOAA Technical Report NOS CS 32, October 2013. <u>https://repository.library.noaa.gov/view/noaa/16917</u>
- Funakoshi, Y., J. C. Feyen, F. Aikman, A. J. van der Westhuysen, and H. L. Tolman (2013). The Extratropical Surge and Tide Operational Forecast System (ESTOFS) Atlantic Implementation and Skill Assessment. NOAA Tech. Rep. NOS CS 32, 155 pp. <u>https://repository.library.noaa.gov/view/noaa/16917</u>
- 4. Xu, J. and J. C. Feyen (2016). The Extratropical Surge and Tide Operational Forecast System for the eastern North Pacific Ocean (ESTOFS-Pacific): Development and

Skill Assessment. NOAA Tech. Rep. NOS CS 36, 163 pp. https://repository.library.noaa.gov/view/noaa/8441

- Lanerolle, etc., The Second Generation Operational Forecast System (CBOFS2): Model Development and Skill Assessment, NOAA Technical Report NOS CS 29, March 2011. <u>https://repository.library.noaa.gov/view/noaa/2589</u>
- 6. Schmalz, etc., Hydrodynamic Model Development for San Francisco Bay Operational Forecast System (SFBOFS). NOAA Technical Report NOS CS 34, June 2014 <u>https://repository.library.noaa.gov/view/noaa/2693</u>
- Yang, etc., NOAA'S Upgraded Northern Gulf of Mexico Operational Forecast System: Model Development and Hindcast Skill Assessment. NOAA Technical Report NOS CS 41, April 2022. <u>https://repository.library.noaa.gov/view/noaa/39504</u>
- 8. Ye, etc., Assessing the Pre-Operational Surge and Tide Forecast System (STOFS-3D-Atlantic) with Inland to Coastal Flooding During Hurricane Ida. (Manuscript under review; to be published as a NOAA Technical Report)

# APPENDIX STATION METADATA FOR EACH OPERATIONAL FORECAST SYSTEM

| No. | ID      | Name                | Longitude (°E) | Latitude (°N) |
|-----|---------|---------------------|----------------|---------------|
| 001 | 9415144 | PORTCHICAGO         | -122.04        | 38.056        |
| 002 | 9415102 | MARTINEZ-AMORCOPIER | -122.1248      | 38.0342       |
| 003 | 9415020 | POINTREYES          | -122.977       | 37.9961       |
| 004 | 9414863 | RICHMOND            | -122.4         | 37.9283       |
| 005 | 9414290 | SANFRANCISCO        | -122.465       | 37.8067       |
| 006 | 9414750 | ALAMEDA             | -122.298       | 37.7717       |
| 007 | 9414523 | REDWOODCITY         | -122.21        | 37.5067       |

#### Table A.1 Station IDs, names, and geographical locations of the SFBOFS stations

| No. | ID      | Name                        | Longitude (°E) | Latitude (°N) |
|-----|---------|-----------------------------|----------------|---------------|
| 001 | 8775237 | Port Aransas, TX            | -97.0733       | 27.8383       |
| 002 | 8773701 | Port O'Connor, TX           | -96.3883       | 28.4517       |
| 003 | 8771013 | Eagle Point, TX             | -94.9183       | 29.48         |
| 004 | 8762075 | Port Fourchon, LA           | -90.1983       | 29.1133       |
| 005 | 8735180 | Dauphin Island, AL          | -88.075        | 30.25         |
| 006 | 8729840 | Pensacola, AL               | -87.2117       | 30.4033       |
| 007 | 8779770 | Port Isabel, TX             | -97.215        | 26.061        |
| 008 | 8775241 | Aransas Pass, TX            | -97.0383       | 27.8367       |
| 009 | 8774230 | Aransas Wildlife Refuge, TX | -96.795        | 28.2283       |
| 010 | 8771450 | Galveston Pier 21, TX       | -94.7933       | 29.31         |
| 011 | 8771341 | Galveston Bay Entrance, TX  | -94.7233       | 29.3567       |
| 012 | 8770971 | Rollover Pass, TX           | -94.5133       | 29.515        |
| 013 | 8770808 | High Island, TX             | -94.39         | 29.595        |
| 014 | 8770475 | Port Arthur, TX             | -93.93         | 29.8667       |
| 015 | 8770822 | Texas Point, TX             | -93.8367       | 29.6767       |
| 016 | 8767816 | Lake Charles, TX            | -93.2217       | 30.2233       |
| 017 | 8767961 | Bulk Terminal, TX           | -93.3          | 30.19         |
| 018 | 8768094 | Calcasieu Pass, TX          | -93.3417       | 29.7667       |
| 019 | 8766072 | Freshwater Canal, LA        | -92.305        | 29.555        |
| 020 | 8764227 | Atchafalaya Delta, LA       | -91.3367       | 29.4483       |
| 021 | 8764314 | Eugene Island, LA           | -91.3833       | 29.3667       |
| 022 | 8761724 | Grand Isle, LA              | -89.9567       | 29.2633       |
| 023 | 8760922 | Pilots Station, LA          | -89.4067       | 28.9317       |
| 024 | 8761305 | Shell Beach, LA             | -89.6717       | 29.8667       |
| 025 | 8761927 | New Canal Station, LA       | -90.1133       | 30.0267       |
| 026 | 8747437 | Bay Waveland, MS            | -89.325        | 30.325        |
| 027 | 8741533 | Pascagoula NOAA Lab, MS     | -88.5617       | 30.3667       |
| 028 | 8737048 | Mobile State Docks, AL      | -88.0433       | 30.7083       |
| 029 | 8736897 | USCG Sector Mobile, AL      | -88.0583       | 30.6483       |
| 030 | 8735391 | Dog River Bridge, AL        | -88.0867       | 30.565        |
| 031 | 8735523 | E Fow I River Bridge, AL    | -88.1133       | 30.4433       |
| 032 | 8738043 | W Fow I River Bridge, AL    | -88.1583       | 30.3767       |
| 033 | 8739803 | Bayou La Batre Bridge, AL   | -88.2467       | 30.405        |
| 034 | 8729108 | Panama City, AL             | -85.6667       | 30.1517       |

 Table A.2 Station IDs, names, and geographical locations of the NGOFS2 stations

| No. | ID      | Name      | Longitude (°E) | Latitude (°N) |
|-----|---------|-----------|----------------|---------------|
| 001 | 8574680 | Baltimore | -76.5783       | 39.2667       |
| 002 | 8571892 | Cambridge | -76.0683       | 38.5733       |
| 003 | 8575512 | Annapolis | -76.48         | 38.9833       |
| 004 | 8577330 | Solomons  | -76.4517       | 38.3167       |
| 005 | 8632200 | Kiptopeke | -75.9883       | 37.165        |
| 006 | 8638610 | Sewells   | -76.33         | 36.9467       |
| 007 | 8635750 | Lewisetta | -76.4633       | 37.995        |

 Table A.3 Station IDs, names, and geographical locations of the CBOFS stations

| No. | ID      | Name                            | Longitude (°E) | Latitude (°N) |
|-----|---------|---------------------------------|----------------|---------------|
| 001 | 2695535 | Bermuda Biological Station      | -64.695        | 32.37         |
| 002 | 8410140 | Eastport                        | -66.962        | 44.916        |
| 003 | 8411060 | Cutler Farris Wharf             | -67.1986       | 44.6523       |
| 004 | 8413320 | Bar Harbor                      | -68.1997       | 44.3936       |
| 005 | 8418150 | Portland                        | -70.2467       | 43.6567       |
| 006 | 8443970 | Boston                          | -71.0503       | 42.3539       |
| 007 | 8447386 | Fall River                      | -71.1663       | 41.7066       |
| 008 | 8447435 | Chatham, Lydia Cove             | -69.9505       | 41.6886       |
| 009 | 8447930 | Woods Hole                      | -70.6711       | 41.5236       |
| 010 | 8449130 | Nantucket Island                | -70.0964       | 41.2853       |
| 011 | 8452660 | Newport                         | -71.3267       | 41.505        |
| 012 | 8452944 | Conimicut Light                 | -71.3433       | 41.7167       |
| 013 | 8454000 | Providence                      | -71.3992       | 41.8067       |
| 014 | 8454049 | Quonset Point                   | -71.411        | 41.5868       |
| 015 | 8461490 | New London, Thames River        | -72.0867       | 41.355        |
| 016 | 8465705 | New Haven                       | -72.9083       | 41.2833       |
| 017 | 8467150 | Bridgeport                      | -73.1841       | 41.175        |
| 018 | 8510560 | Montauk                         | -71.9594       | 41.0483       |
| 019 | 8516945 | Kings Point                     | -73.765        | 40.8103       |
| 020 | 8518750 | The Battery                     | -74.0148       | 40.6995       |
| 021 | 8518962 | Turkey Point Hudson River NERRS | -73.9389       | 42.0138       |
| 022 | 8519483 | Bergen Point West Reach         | -74.1177       | 40.6438       |
| 023 | 8531680 | Sandy Hook                      | -74.0094       | 40.4669       |
| 024 | 8534720 | Atlantic City                   | -74.4183       | 39.355        |
| 025 | 8536110 | Cape May                        | -74.9597       | 38.9678       |
| 026 | 8537121 | Ship John Shoal                 | -75.375        | 39.305        |
| 027 | 8539094 | Burlington, Delaware River      | -74.8733       | 40.08         |
| 028 | 8540433 | Marcus Hook                     | -75.4094       | 39.8117       |
| 029 | 8545240 | Philadelphia                    | -75.1402       | 39.9332       |
| 030 | 8546252 | Bridesburg                      | -75.075        | 39.9833       |
| 031 | 8548989 | Newbold                         | -74.7519       | 40.1373       |
| 032 | 8551762 | Delaware City                   | -75.5883       | 39.5817       |
| 033 | 8551910 | Reedy Point                     | -75.5733       | 39.5597       |
| 034 | 8555889 | Brandywine Shoal Light          | -75.1133       | 38.9867       |
| 035 | 8557380 | Lewes                           | -75.1192       | 38.7828       |
| 036 | 8570283 | Ocean City Inlet                | -75.091        | 38.3278       |
| 037 | 8571421 | Bishops Head                    | -76.0387       | 38.2204       |
| 038 | 8571892 | Cambridge                       | -76.0694       | 38.5804       |
| 039 | 8573364 | Tolchester Beach                | -76.245        | 39.2133       |
| 040 | 8573927 | Chesapeake City                 | -75.8126       | 39.529        |

 Table A.4 Station IDs, names, and geographical locations of the ESTOFS stations

| No. | ID      | Name                              | Longitude (°E) | Latitude (°N) |
|-----|---------|-----------------------------------|----------------|---------------|
| 041 | 8574680 | Baltimore, Fort McHenry, Patapsco | -76.5783       | 39.2667       |
|     |         | River                             |                |               |
| 042 | 8575512 | Annapolis                         | -76.4741       | 38.9805       |
| 043 | 8577330 | Solomons Island                   | -76.4508       | 38.3172       |
| 044 | 8594900 | Washington                        | -77.0217       | 38.8733       |
| 045 | 8631044 | Wachapreague                      | -75.6858       | 37.6078       |
| 046 | 8632200 | Kiptopeke                         | -75.9884       | 37.1652       |
| 047 | 8635027 | Dahlgren                          | -77.0366       | 38.3197       |
| 048 | 8635750 | Lewisetta                         | -76.4646       | 37.9954       |
| 049 | 8636580 | Windmill Point                    | -76.2806       | 37.6073       |
| 050 | 8637689 | Yorktown USCG Training Center     | -76.4788       | 37.2265       |
| 051 | 8638610 | Sewells Point                     | -76.33         | 36.9467       |
| 052 | 8638901 | CBBT, Chesapeake Channel          | -76.0833       | 37.0329       |
| 053 | 8639348 | Money Point                       | -76.3017       | 36.7783       |
| 054 | 8651370 | Duck                              | -75.7467       | 36.1833       |
| 055 | 8652587 | Oregon Inlet Marina               | -75.5481       | 35.795        |
| 056 | 8654467 | USCG Station Hatteras             | -75.7042       | 35.2086       |
| 057 | 8656483 | Beaufort, Duke Marine Lab         | -76.67         | 34.72         |
| 058 | 8658120 | Wilmington                        | -77.9536       | 34.2275       |
| 059 | 8658163 | Wrightsville Beach                | -77.7867       | 34.2133       |
| 060 | 8661070 | Springmaid Pier                   | -78.9183       | 33.655        |
| 061 | 8665530 | Charleston, Cooper River Entrance | -79.9236       | 32.7808       |
| 062 | 8670870 | Fort Pulaski                      | -80.9017       | 32.0367       |
| 063 | 8720030 | Fernandina Beach                  | -81.4658       | 30.6714       |
| 064 | 8720218 | Mayport, Bar Pilots Dock          | -81.4279       | 30.3982       |
| 065 | 8720219 | Dames Point                       | -81.5583       | 30.3867       |
| 066 | 8720226 | Southbank Riverwalk, St Johns     | -81.6581       | 30.3209       |
|     |         | River                             |                |               |
| 067 | 8721604 | Trident Pier, Port Canaveral      | -80.5934       | 28.4157       |
| 068 | 8722670 | Lake Worth Pier, Atlantic Ocean   | -80.0342       | 26.6128       |
| 069 | 8722956 | South Port Everglades             | -80.1008       | 26.0889       |
| 070 | 8723214 | Virginia Key, Biscayne Bay        | -80.1618       | 25.7314       |
| 071 | 8723970 | Vaca Key, Florida Bay             | -81.1065       | 24.711        |
| 072 | 8724580 | Key West                          | -81.8081       | 24.5508       |
| 073 | 8725110 | Naples, Gulf of Mexico            | -81.8075       | 26.1317       |
| 074 | 8725520 | Fort Myers, Caloosahatchee River  | -81.8712       | 26.6477       |
| 075 | 8726384 | Port Manatee                      | -82.5625       | 27.6383       |
| 076 | 8726520 | St. Petersburg, Tampa Bay         | -82.6269       | 27.7606       |
| 077 | 8726607 | Old Port Tampa                    | -82.5528       | 27.8578       |
| 078 | 8726724 | Clearwater Beach                  | -82.8317       | 27.9783       |
| 079 | 8727520 | Cedar Key                         | -83.102        | 29.0851       |
| 080 | 8728690 | Apalachicola                      | -84.9817       | 29.7267       |

| No. | ID      | Name                             | Longitude (°E) | Latitude (°N) |
|-----|---------|----------------------------------|----------------|---------------|
| 081 | 8729108 | Panama City                      | -85.6669       | 30.1523       |
| 082 | 8729210 | Panama City Beach                | -85.8783       | 30.2133       |
| 083 | 8729840 | Pensacola                        | -87.2112       | 30.4044       |
| 084 | 8735180 | Dauphin Island                   | -88.075        | 30.25         |
| 085 | 8735391 | Dog River Bridge                 | -88.08         | 30.5639       |
| 086 | 8735523 | East Fowl River Bridge           | -88.109        | 30.4463       |
| 087 | 8736897 | Coast Guard Sector Mobile        | -88.0556       | 30.648        |
| 088 | 8737048 | Mobile State Docks               | -88.0433       | 30.7083       |
| 089 | 8737138 | Chickasaw Creek                  | -88.0736       | 30.7819       |
| 090 | 8738043 | West Fowl River Bridge           | -88.1594       | 30.3749       |
| 091 | 8739803 | Bayou La Batre Bridge            | -88.2733       | 30.3765       |
| 092 | 8741533 | Pascagoula NOAA Lab              | -88.5655       | 30.3679       |
| 093 | 8747437 | Bay Waveland Yacht Club          | -89.325        | 30.325        |
| 094 | 8760721 | Pilottown                        | -89.2583       | 29.1783       |
| 095 | 8760922 | Pilots Station East, S.W. Pass   | -89.4075       | 28.9322       |
| 096 | 8761305 | Shell Beach                      | -89.6732       | 29.8681       |
| 097 | 8761724 | Grand Isle                       | -89.9575       | 29.2679       |
| 098 | 8761927 | New Canal Station                | -90.112        | 30.0303       |
| 099 | 8762075 | Port Fourchon, Belle Pass        | -90.1993       | 29.1142       |
| 100 | 8764044 | Berwick, Atchafalaya River       | -91.2376       | 29.6675       |
| 101 | 8764227 | Atchafalaya Delta, LA            | -91.3459       | 29.456        |
| 102 | 8764314 | Eugene Island, North of, Gulf of | -91.3839       | 29.3675       |
|     |         | Mexico                           |                |               |
| 103 | 8766072 | Freshwater Canal Locks           | -92.3092       | 29.5266       |
| 104 | 8767816 | Lake Charles                     | -93.2243       | 30.2241       |
| 105 | 8767961 | Bulk Terminal                    | -93.3008       | 30.1902       |
| 106 | 8768094 | Calcasieu Pass                   | -93.3429       | 29.7682       |
| 107 | 8770475 | Port Arthur                      | -93.931        | 29.8671       |
| 108 | 8770520 | Rainbow Bridge                   | -93.8642       | 29.9793       |
| 109 | 8770613 | Morgans Point, Barbours Cut      | -94.985        | 29.6817       |
| 110 | 8770777 | Manchester                       | -95.2658       | 29.7262       |
| 111 | 8770808 | High Island                      | -94.3903       | 29.5947       |
| 112 | 8770822 | Texas Point, Sabine Pass         | -93.8408       | 29.6897       |
| 113 | 8770971 | Rollover Pass                    | -94.5106       | 29.5156       |
| 114 | 8771013 | Eagle Point, Galveston Bay       | -94.9183       | 29.48         |
| 115 | 8771341 | Galveston Bay Entrance, North    | -94.7248       | 29.3573       |
|     |         | Jetty                            |                |               |
| 116 | 8771450 | Galveston Pier 21                | -94.7933       | 29.31         |
| 117 | 8771486 | Galveston Railroad Bridge        | -94.8971       | 29.3026       |
| 118 | 8771972 | San Luis Pass                    | -95.1313       | 29.081        |
| 119 | 8772471 | Freeport SPIP, Freeport Harbor   | -95.2942       | 28.9357       |
| 120 | 8772985 | Sargent                          | -95.6172       | 28.7714       |

| No. | ID      | Name                              | Longitude (°E) | Latitude (°N) |
|-----|---------|-----------------------------------|----------------|---------------|
| 121 | 8773037 | Seadrift                          | -96.7319       | 28.3891       |
| 122 | 8773146 | Matagorda City                    | -95.914        | 28.7101       |
| 123 | 8773259 | Port Lavaca                       | -96.6098       | 28.6406       |
| 124 | 8773701 | Port O.Connor                     | -96.3956       | 28.4459       |
| 125 | 8773767 | Matagorda Bay Entrance Channel    | -96.3301       | 28.4269       |
| 126 | 8774230 | Aransas Wildlife Refuge           | -96.7816       | 28.2199       |
| 127 | 8774770 | Rockport                          | -97.0403       | 28.0187       |
| 128 | 8775237 | Port Aransas                      | -97.0725       | 27.8397       |
| 129 | 8775241 | Aransas, Aransas Pass             | -97.0391       | 27.8366       |
| 130 | 8775296 | USS Lexington, Corpus Christi Bay | -97.3892       | 27.8149       |
| 131 | 8775870 | Bob Hall Pier, Corpus Christi     | -97.2167       | 27.58         |
| 132 | 8779280 | Realitos Peninsula                | -97.2853       | 26.2624       |
| 133 | 8779748 | South Padre Island CG Station     | -97.1675       | 26.0731       |
| 134 | 8779749 | SPI Brazos Santiago               | -97.1548       | 26.0674       |
| 135 | 8779770 | Port Isabel                       | -97.166        | 26.0649       |

| No. | ID      | Name                              | Longitude (°E) | Latitude (°N) |
|-----|---------|-----------------------------------|----------------|---------------|
| 001 | 2695535 | Bermuda Biological Station        | -64.695        | 32.37         |
| 002 | 8410140 | Eastport                          | -66.962        | 44.916        |
| 003 | 8411060 | Cutler Farris Wharf               | -67.1986       | 44.6523       |
| 004 | 8413320 | Bar Harbor                        | -68.1997       | 44.3936       |
| 005 | 8418150 | Portland                          | -70.2467       | 43.6567       |
| 006 | 8443970 | Boston                            | -71.0503       | 42.3539       |
| 007 | 8447386 | Fall River                        | -71.1663       | 41.7066       |
| 008 | 8447435 | Chatham, Lydia Cove               | -69.9505       | 41.6886       |
| 009 | 8447930 | Woods Hole                        | -70.6711       | 41.5236       |
| 010 | 8449130 | Nantucket Island                  | -70.0964       | 41.2853       |
| 011 | 8452660 | Newport                           | -71.3267       | 41.505        |
| 012 | 8452944 | Conimicut Light                   | -71.3433       | 41.7167       |
| 013 | 8454000 | Providence                        | -71.3992       | 41.8067       |
| 014 | 8454049 | Quonset Point                     | -71.411        | 41.5868       |
| 015 | 8461490 | New London, Thames River          | -72.0867       | 41.355        |
| 016 | 8465705 | New Haven                         | -72.9083       | 41.2833       |
| 017 | 8467150 | Bridgeport                        | -73.1841       | 41.175        |
| 018 | 8510560 | Montauk                           | -71.9594       | 41.0483       |
| 019 | 8516945 | Kings Point                       | -73.765        | 40.8103       |
| 020 | 8518750 | The Battery                       | -74.0148       | 40.6995       |
| 021 | 8518962 | Turkey Point Hudson River NERRS   | -73.9389       | 42.0138       |
| 022 | 8519483 | Bergen Point West Reach           | -74.1177       | 40.6438       |
| 023 | 8531680 | Sandy Hook                        | -74.0094       | 40.4669       |
| 024 | 8534720 | Atlantic City                     | -74.4183       | 39.355        |
| 025 | 8536110 | Cape May                          | -74.9597       | 38.9678       |
| 026 | 8537121 | Ship John Shoal                   | -75.375        | 39.305        |
| 027 | 8539094 | Burlington, Delaware River        | -74.8733       | 40.08         |
| 028 | 8540433 | Marcus Hook                       | -75.4094       | 39.8117       |
| 029 | 8545240 | Philadelphia                      | -75.1402       | 39.9332       |
| 030 | 8546252 | Bridesburg                        | -75.075        | 39.9833       |
| 031 | 8548989 | Newbold                           | -74.7519       | 40.1373       |
| 032 | 8551762 | Delaware City                     | -75.5883       | 39.5817       |
| 033 | 8551910 | Reedy Point                       | -75.5733       | 39.5597       |
| 034 | 8555889 | Brandywine Shoal Light            | -75.1133       | 38.9867       |
| 035 | 8557380 | Lewes                             | -75.1192       | 38.7828       |
| 036 | 8570283 | Ocean City Inlet                  | -75.091        | 38.3278       |
| 037 | 8571421 | Bishops Head                      | -76.0387       | 38.2204       |
| 038 | 8571892 | Cambridge                         | -76.0694       | 38.5804       |
| 039 | 8573364 | Tolchester Beach                  | -76.245        | 39.2133       |
| 040 | 8573927 | Chesapeake City                   | -75.8126       | 39.529        |
| 041 | 8574680 | Baltimore, Fort McHenry, Patapsco | -76.5783       | 39.2667       |
|     |         | River                             |                |               |
| 042 | 8575512 | Annapolis                         | -76.4741       | 38.9805       |
| 043 | 8577330 | Solomons Island                   | -76.4508       | 38.3172       |
| 044 | 8594900 | Washington                        | -77.0217       | 38.8733       |

 Table A.5
 Station IDs, names, and geographical locations of the STOFS-3D 

 Atlantic stations

| No. | ID      | Name                              | Longitude (°E) | Latitude (°N) |
|-----|---------|-----------------------------------|----------------|---------------|
| 045 | 8631044 | Wachapreague                      | -75.6858       | 37.6078       |
| 046 | 8632200 | Kiptopeke                         | -75.9884       | 37.1652       |
| 047 | 8635027 | Dahlgren                          | -77.0366       | 38.3197       |
| 048 | 8635750 | Lewisetta                         | -76.4646       | 37.9954       |
| 049 | 8636580 | Windmill Point                    | -76.2806       | 37.6073       |
| 050 | 8637689 | Yorktown USCG Training Center     | -76.4788       | 37.2265       |
| 051 | 8638610 | Sewells Point                     | -76.33         | 36.9467       |
| 052 | 8638901 | CBBT, Chesapeake Channel          | -76.0833       | 37.0329       |
| 053 | 8639348 | Money Point                       | -76.3017       | 36.7783       |
| 054 | 8651370 | Duck                              | -75.7467       | 36.1833       |
| 055 | 8652587 | Oregon Inlet Marina               | -75.5481       | 35.795        |
| 056 | 8654467 | USCG Station Hatteras             | -75.7042       | 35.2086       |
| 057 | 8656483 | Beaufort, Duke Marine Lab         | -76.67         | 34.72         |
| 058 | 8658120 | Wilmington                        | -77.9536       | 34.2275       |
| 059 | 8658163 | Wrightsville Beach                | -77.7867       | 34.2133       |
| 060 | 8661070 | Springmaid Pier                   | -78.9183       | 33.655        |
| 061 | 8665530 | Charleston, Cooper River Entrance | -79.9236       | 32.7808       |
| 062 | 8670870 | Fort Pulaski                      | -80.9017       | 32.0367       |
| 063 | 8720030 | Fernandina Beach                  | -81.4658       | 30.6714       |
| 064 | 8720218 | Mayport, Bar Pilots Dock          | -81.4279       | 30.3982       |
| 065 | 8720219 | Dames Point                       | -81.5583       | 30.3867       |
| 066 | 8720226 | Southbank Riverwalk, St Johns     | -81.6581       | 30.3209       |
|     |         | River                             |                |               |
| 067 | 8721604 | Trident Pier, Port Canaveral      | -80.5934       | 28.4157       |
| 068 | 8722670 | Lake Worth Pier, Atlantic Ocean   | -80.0342       | 26.6128       |
| 069 | 8722956 | South Port Everglades             | -80.1008       | 26.0889       |
| 070 | 8723214 | Virginia Key, Biscayne Bay        | -80.1618       | 25.7314       |
| 071 | 8723970 | Vaca Key, Florida Bay             | -81.1065       | 24.711        |
| 072 | 8724580 | Key West                          | -81.8081       | 24.5508       |
| 073 | 8725110 | Naples, Gulf of Mexico            | -81.8075       | 26.1317       |
| 074 | 8725520 | Fort Myers, Caloosahatchee River  | -81.8712       | 26.6477       |
| 075 | 8726384 | Port Manatee                      | -82.5625       | 27.6383       |
| 076 | 8726520 | St. Petersburg, Tampa Bay         | -82.6269       | 27.7606       |
| 077 | 8726607 | Old Port Tampa                    | -82.5528       | 27.8578       |
| 078 | 8726724 | Clearwater Beach                  | -82.8317       | 27.9783       |
| 079 | 8727520 | Cedar Key                         | -83.102        | 29.0851       |
| 080 | 8728690 | Apalachicola                      | -84.9817       | 29.7267       |
| 081 | 8729108 | Panama City                       | -85.6669       | 30.1523       |
| 082 | 8729210 | Panama City Beach                 | -85.8783       | 30.2133       |
| 083 | 8729840 | Pensacola                         | -87.2112       | 30.4044       |
| 084 | 8735180 | Dauphin Island                    | -88.075        | 30.25         |
| 085 | 8735391 | Dog River Bridge                  | -88.08         | 30.5639       |
| 086 | 8/35523 | East Fowl River Bridge            | -88.109        | 30.4463       |
| 087 | 8736897 | Coast Guard Sector Mobile         | -88.0556       | 30.648        |
| 088 | 8/3/048 | NIODILE State Docks               | -88.0433       | 30.7083       |
| 089 | 8/3/138 |                                   | -88.0736       | 30.7819       |
| 090 | 8738043 | vvest Fowl River Bridge           | -88.1594       | 30.3749       |
| 091 | 8739803 | Bayou La Batre Bridge             | -88.2733       | 30.3765       |

| No. | ID      | Name                                       | Longitude (°E) | Latitude (°N) |
|-----|---------|--------------------------------------------|----------------|---------------|
| 092 | 8741533 | Pascagoula NOAA Lab                        | -88.5655       | 30.3679       |
| 093 | 8747437 | Bay Waveland Yacht Club                    | -89.325        | 30.325        |
| 094 | 8760721 | Pilottown                                  | -89.2583       | 29.1783       |
| 095 | 8760922 | Pilots Station East, S.W. Pass             | -89.4075       | 28.9322       |
| 096 | 8761305 | Shell Beach                                | -89.6732       | 29.8681       |
| 097 | 8761724 | Grand Isle                                 | -89.9575       | 29.2679       |
| 098 | 8761927 | New Canal Station                          | -90.112        | 30.0303       |
| 099 | 8762075 | Port Fourchon, Belle Pass                  | -90.1993       | 29.1142       |
| 100 | 8764044 | Berwick, Atchafalaya River                 | -91.2376       | 29.6675       |
| 101 | 8764227 | Atchafalaya Delta, LA                      | -91.3459       | 29.456        |
| 102 | 8764314 | Eugene Island, North of, Gulf of<br>Mexico | -91.3839       | 29.3675       |
| 103 | 8766072 | Freshwater Canal Locks                     | -92.3092       | 29.5266       |
| 104 | 8767816 | Lake Charles                               | -93.2243       | 30.2241       |
| 105 | 8767961 | Bulk Terminal                              | -93.3008       | 30.1902       |
| 106 | 8768094 | Calcasieu Pass                             | -93.3429       | 29.7682       |
| 107 | 8770475 | Port Arthur                                | -93.931        | 29.8671       |
| 108 | 8770520 | Rainbow Bridge                             | -93.8642       | 29.9793       |
| 109 | 8770613 | Morgans Point, Barbours Cut                | -94.985        | 29.6817       |
| 110 | 8770777 | Manchester                                 | -95.2658       | 29.7262       |
| 111 | 8770808 | High Island                                | -94.3903       | 29.5947       |
| 112 | 8770822 | Texas Point, Sabine Pass                   | -93.8408       | 29.6897       |
| 113 | 8770971 | Rollover Pass                              | -94.5106       | 29.5156       |
| 114 | 8771013 | Eagle Point, Galveston Bay                 | -94.9183       | 29.48         |
| 115 | 8771341 | Galveston Bay Entrance, North              | -94.7248       | 29.3573       |
|     |         | Jetty                                      |                |               |
| 116 | 8771450 | Galveston Pier 21                          | -94.7933       | 29.31         |
| 117 | 8771486 | Galveston Railroad Bridge                  | -94.8971       | 29.3026       |
| 118 | 8771972 | San Luis Pass                              | -95.1313       | 29.081        |
| 119 | 8772471 | Freeport SPIP, Freeport Harbor             | -95.2942       | 28.9357       |
| 120 | 8772985 | Sargent                                    | -95.6172       | 28.7714       |
| 121 | 8773037 | Seadrift                                   | -96.7319       | 28.3891       |
| 122 | 8773146 | Matagorda City                             | -95.914        | 28.7101       |
| 123 | 8773259 | Port Lavaca                                | -96.6098       | 28.6406       |
| 124 | 8773701 | Port O.Connor                              | -96.3956       | 28.4459       |
| 125 | 8773767 | Matagorda Bay Entrance Channel             | -96.3301       | 28.4269       |
| 126 | 8774230 | Aransas Wildlife Refuge                    | -96.7816       | 28.2199       |
| 127 | 8774770 | Rockport                                   | -97.0403       | 28.0187       |
| 128 | 8775237 | Port Aransas                               | -97.0725       | 27.8397       |
| 129 | 8775241 | Aransas, Aransas Pass                      | -97.0391       | 27.8366       |
| 130 | 8775296 | USS Lexington, Corpus Christi Bay          | -97.3892       | 27.8149       |
| 131 | 8775870 | Bob Hall Pier, Corpus Christi              | -97.2167       | 27.58         |
| 132 | 8779280 | Realitos Peninsula                         | -97.2853       | 26.2624       |
| 133 | 8779748 | South Padre Island CG Station              | -97.1675       | 26.0731       |
| 134 | 8779749 | SPI Brazos Santiago                        | -97.1548       | 26.0674       |
| 135 | 8779770 | Port Isabel                                | -97.166        | 26.0649       |